The implementation of sustainable energy systems is an objective of the European Union’s energy policy. This policy aims to support and promote secure energy supplies with a high quality of service at competitive prices and in an environmentally compatible manner.

The European Commission DG for Energy and Transport initiates, coordinates and manages energy saving policy actions focusing on energy efficiency, maintaining and enhancing security of energy supply and international co-operation. A central policy instrument is the support and promotion of energy Research, Technological Development and Demonstration (RTD), principally through the ENERGIE sub-programme under the European Union’s Fifth Framework Programme for RTD. This includes the HOSPITALS project.

The HOSPITALS project aims to demonstrate the significant reductions that can be achieved in the total energy demand of the European health care building sector. These energy demand reductions will contribute to significant reductions in CO₂ emissions.

ENERGY CONSCIOUS EUROPEAN HOSPITALS AND HEALTH CARE BUILDINGS

- INTRODUCTION

This brochure outlines strategies to save energy in buildings, with a focus on hospital and health care buildings. It has been prepared by the HOSPITALS project (EU Project No. NNE5-2001-00295 supported by the European Commission). The brochure aims to illustrate innovative elements that may be included at the first stage of building design and can deliver significant energy savings. The amount of energy saved and the resulting reduction in CO₂ emissions are quantified.

The primary target groups of the HOSPITALS project are administrators, facilities managers, designers and contractors of health care buildings. The HOSPITALS initiative aims to demonstrate that renewable energy technologies may be used with very positive results within the European health care building sector and in this way encourage the exploitation of renewable energy.

List of Contents:

Aims, objectives, tasks & innovative elements

Site 1 Aabenraa Hospital, Denmark
Site 2 Fachkrankenhaus Nordfriesland, Germany
Site 3 Meyer Children Hospital, Italy
Site 4 Torun City Hospital, Poland
Site 5 Deventer Hospital, The Netherlands

Contact details
Innovative elements used in the buildings include:

- Double skin facades
- High performance low-e double glazing
- Transparent insulation
- Environmentally friendly insulation materials
- New energy efficient heating, ventilating and air-conditioning (HVAC) systems reducing the installed capacities & minimising circulation losses
- Optimised control systems for heating, cooling, ventilation & lighting
- Local CHP (Combined Heat and Power) plants
- Minimised use of adsorptive & absorptive building materials, lowering the risk of infection
- Light ducts for increased daylight utilisation & improved visual comfort
- Active solar heating for domestic hot water (DHW)
- Multi-functional photovoltaic (PV) systems, e.g. for electricity production & control of solar gain
- Hybrid ventilation (fan assisted natural ventilation)
- Large aquifers for seasonal storage of heating & cooling

Work packages:

The HOSPITALS project includes five core work packages:

WP1: Integrated Design Process: Implementation and integration of renewable energy elements
WP2: European Design Workshops & Design Review at European level
WP3: Monitoring and Evaluation
WP4: Hospital Facilities Management & Psychical Working Conditions
WP5: Dissemination

And five site specific work packages:

WP6: Planning and Design
WP7: Construction & Erection
WP8: Commissioning
WP9: Monitoring
WP10: Reporting

Aim:

The HOSPITALS initiative aims to demonstrate innovative but practical methods for significantly reducing the total energy demand of the European health care building sector.

The specific objectives are:

- to introduce the use of an integrated energy design process when renovating or constructing health care buildings.
- to increase the use of innovative renewable energy technologies and energy efficiency in the health care building sector.
- to obtain significant reductions in primary energy use, CO2 emissions and peak electricity demand.
- to ensure large improvements in thermal comfort and lighting conditions for patients and employees, thereby achieving a more comfortable indoor climate, faster recovery of the patients and increased efficiency of the employees.
- to carry out comprehensive and careful monitoring and evaluation of five hospital sites.
- to disseminate the experiences and results achieved to key decision-makers, hospital managers, consultants and manufacturers, leading to widespread knowledge and adoption of the successful techniques used.
- to move the European health care building sector forward to the point where the use of energy efficient technologies becomes standard practice for future building programmes.

Benchmarks/target figures

The table below shows the energy demand for space heating and domestic hot water and the total electricity demand for each site.

<table>
<thead>
<tr>
<th>Site</th>
<th>Benchmark kWh/m²/year</th>
<th>Target kWh/m²/year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Thermal</td>
<td>Electricity</td>
</tr>
<tr>
<td>Site 1, DK</td>
<td>168¹</td>
<td>72¹</td>
</tr>
<tr>
<td>Site 2, DE</td>
<td>185</td>
<td>60</td>
</tr>
<tr>
<td>Site 3, IT</td>
<td>112</td>
<td>99</td>
</tr>
<tr>
<td>Site 4, PL renovation</td>
<td>640²</td>
<td>29²</td>
</tr>
<tr>
<td>Site 4, PL new</td>
<td>180</td>
<td>-</td>
</tr>
<tr>
<td>Site 5, NL</td>
<td>208</td>
<td>81</td>
</tr>
</tbody>
</table>

*¹ Average figures; *² Before renovation; *³ More equipment has been installed in the new part compared to the existing hospital.

<table>
<thead>
<tr>
<th>Site</th>
<th>CO₂</th>
<th>SOx</th>
<th>NOx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site 1, DK</td>
<td>974</td>
<td>0,18</td>
<td>1,59</td>
</tr>
<tr>
<td>Site 2, DE</td>
<td>262</td>
<td>0,23</td>
<td>0,002</td>
</tr>
<tr>
<td>Site 3, IT</td>
<td>899</td>
<td>0,77</td>
<td>7,91</td>
</tr>
<tr>
<td>Site 4, PL</td>
<td>3,537</td>
<td>116,0</td>
<td>9,0</td>
</tr>
<tr>
<td>Site 5, NL</td>
<td>1,943</td>
<td>8,71</td>
<td>3,35</td>
</tr>
</tbody>
</table>

Expected emissions reduction
[tonnes/year]

¹ Compared to existing levels
² Compared to benchmark

Funding is being provided by the EU for a proportion (35%) of the eligible capital costs of the five participating sites. Eligible costs include planning, construction, commissioning, monitoring, evaluation and dissemination with respect to the implementation of the innovative elements in the 5 hospitals.
Innovative elements:

- Building integrated solar energy
- Double skin facades
- Natural fan assisted ventilation controlled by a computerised building management system (BMS)
- Active solar heating for domestic hot water
- New water based heating system

Aims & Expectations (Aabenraa):

Energy savings: The energy demand for space heating, ventilation and domestic hot water is expected to be reduced by 2.700 MWh/year and the electricity demand is expected to be reduced by 200 MWh/year. These figures are compared to existing conditions for the renovated building and a building meeting current Danish building codes for the new building.

Financial savings: The annual saving is estimated at 139.719 Euro/year. It is anticipated that the total maintenance costs will be similar to those before the renovation. The total eligible investment cost is 1.759.783 Euro. This gives a simple payback time of 12,6 years, including EU-support (615.924 Euro) the payback time will be 8,2 years.

Emissions savings: The energy savings will lead to a total reduction of polluting emissions per year of: 974 tonnes CO₂, 0,18 tonnes SOx and 1,6 tonnes NOx.
Innovative elements:

- Improved insulation levels
- Double skin facades
- Multifunctional PV-system integrated into glass roof
- Transparent insulation
- Low-emission building materials
- New local CHP plant

Aims & Expectations:

Energy savings: The annual energy demand for heating (space heating, heating of ventilation air and domestic hot water) is expected to be reduced by 56%. This reduction is due to an increased insulation level, transparent insulation and passive solar utilisation.

The heat demand for ventilation is increased by the use of natural ventilation without heat recovery, but this is compensated for by a large reduction in electricity use for fans.

The annual electricity demand (artificial lighting, fans and equipment) is expected to be reduced by 57%. This reduction is due to the hybrid ventilation system, the utilisation of daylight and the use of energy efficient lighting equipment.

Financial savings: The annual saving is estimated at 76,500 Euro/year with an annual maintenance cost of 6,500 Euro. The total eligible investment cost is 1,467,518 Euro. This gives a simple payback time of 13.7 years, including EU-support (336,587 Euro) the payback time will be 8.9 years.

Emissions savings: The energy saving will mean an annual reductions in emissions of 262 tonnes CO₂, 0.23 tonnes SOx and 0.002 tonnes NOx. This is a reduction in total emissions of 46%.
Innovative elements:
- Buffer space
- Energy efficient hybrid ventilation system
- Light ducts
- Environmentally friendly surface paints
- BEMS (Building Energy Management System)

Aims & Expectations:

Energy savings: The annual energy demand for heating and cooling is expected to be reduced by 35% and the use of electricity is expected to be reduced by 36% compared to a standard new built Italian hospital.

Financial savings: The annual saving is estimated at 92,000 Euro/year with an annual maintenance cost of 9,000 Euro. The total eligible investment cost is estimated to 1,467,518 Euro. This gives a simple payback time of 17.7 years and including EU-support (513,631 Euro) the payback time will be 11.5 years.

Emissions savings: A substantial reduction in emissions of 899 tonnes CO₂ per year, 0.77 tonnes SOx and 7.91 tonnes NOx is expected compared to the emission levels before renovation.

The architectural integration of energy saving strategies has been a main aim in the design of the Meyer Children’s Hospital in Florence. The building, now under construction, will have 150 beds and will be important in the paediatric field in Italy and in Europe. Its exemplary construction has great potential for dissemination and advancing the design of hospitals within Europe. The project has focused on the detailed planning and design of the health care environment and, particularly, the psychological effects of the environment. This approach has been considered essential for the neonatal intensive care environment which has a significant effect on babies, their families and caretakers.

Special attention was paid to interior rooms and the surrounding view in order to obtain a better confinement period and to stimulate beneficial effects on patient health.
Aims & Expectations:

Energy savings: Energy consumption of the existing buildings is expected to be reduced by 30% after insulation of the building envelope and implementation of thermostatic valves. The energy consumption of the new built part of the hospital is expected to be reduced by 54% compared to a standard new built hospital. Total annual expected savings of 73,935 Euro per year.

Financial savings: The annual saving is estimated at 73,935 Euro/year with an annual maintenance cost of 14,546 Euro per year. The total eligible investment cost is 900,604 Euro. This gives a simple payback time of 15,2 years, including EU-support (315,211 Euro) the payback time will be 9,9 years.

Emissions savings: The energy savings will deliver a total reduction per year of polluting emissions of: 3,537 tonnes CO₂, 116 tonnes SOx and 9 tonnes NOx.

Innovative elements:

- New room temperature controls
- Modern heaters
- Optimised ducting
- Advanced valves
- Fan assisted natural ventilation
- New high performance windows
- Significant increase of the insulation level

Site 4: Torun City Hospital, Poland

Gross area: 35,000 m²

The hospital is situated in Torun – a city belonging to the European Network of Healthy Cities. Health promotion at local level is based on the pro-health strategies of the "Healthy Cities" Project of the World Health Organisation (WHO). The city authorities, when they made the decision to adopt the Project and join the existing Association of Healthy Polish Cities, made a commitment to change their policy – to a new approach to public health issues. The hospital has 249 beds. The Torun City Hospital project includes renovation as well as new buildings.
The Dutch Care Federation (Nederlandse Zorgfederatie) signed an agreement with the Dutch Department for Economy to reduce their energy consumption by 30% relative to the level of 1988. The newly built Deventer Hospital contributes to the implementation of this plan.

In addition to the strong focus on energy efficiency, the new building design is strongly dedicated to the comfort and well-being of the patients as well as employees and other usergroups.

Innovative elements:
- Good building envelope insulation, low E-glazing and heat recovery from ventilation air
- Grouping of floors and areas with similar use periods
- Heat pump connected to seasonal storage of heat and cold in aquifers
- CHP for domestic hot water production
- Flexibility in energy management and building organisation through all-air heating system, and through BMS

Aims & Expectations:

Energy savings: Major savings in heat and cooling demand are expected. Compared to a conventional system the annual energy use for space heating is estimated to be reduced by 73% to 44 kWh/m², and the energy use for cooling is expected to be reduced by about 50%. Electricity consumption is estimated to be reduced by around 16% compared to a standard hospital.

Financial savings: The annual saving is estimated at 154,545 Euro. The total eligible investment cost is 2,039,548 Euro. This gives a simple payback time of 13,4 years, including EU-support (713,842 Euro) the payback time will be 8,7 years.

Emissions savings: Energy savings will result in annual emissions reductions of 1,943 tonnes CO₂, 8,71 tonnes SOx and 3,35 tonnes NOx. This is a reduction of 69% compared to a conventional system.
The five hospital sites are:

AABENRAA HOSPITAL, DENMARK
Liane Timm Schwarz, The County of South Jutland
Esbensen Consultants A/S (Energy consultant)
S&I Architects A/S (Architect)

TORUN CITY HOSPITAL, POLAND
Krystyna Zaleska, Roman Nadolny
Specjalistyczny Szpital Miejski, im. M. Kopernika w Toruniu
ul. Batorego 17/19
87-100 Torun, Poland
Tel. +48 56 610 0324
e-mail:rom@med.torun.pl

MEYER CHILDREN’s HOSPITAL, ITALY
Renato Colombo
via Luca Giordano, 7 M
I-50132 Firenze, Italy
Tel.: +39 055 5662319
e-mail:DirAz@Meyer.it
www.meyer.it
Marco Sala Associates (Energy consultant)
CSPE (Architects)

FACHKRANKENHAUS NORDFRIESLAND, GERMANY
Sönke Thiesen / Eberhard Schwarz
Krankenhausweg 3
DE-25821 Bredstedt, Germany
Tel.: +49 4671 90 4-0
e-mail:sabine.mueseler@fachkrankenhausnf.de
Esbensen Consultants A/S (Energy consultant)
Detlef + Lundelius (Architect)

DEVENTER HOSPITAL, THE NETHERLANDS
Cees van Mil
PO Box 5001, Ceintuurbaan 6
NL-7400 GC Deventer, The Netherlands
Tel.: +31 570 64 6528
e-mail: CJ HM.vanMil@dz.nl

Supporting Organization
European Commission Directorate -
General for Energy and Transport
EU Contract. No.: NNE5-2001-00295

Information about The Fifth Framework Programme is available at the following website:
http://cordis.lu/fpf5/home.html
Further information on DG for Energy and Transport activities is available at the internet
website address: http://europa.eu.int/comm/energy/res/index_en.htm

The HOSPITALS internet website address is http://www.eu-hospitals.net